The structure and organization of lamprin genes: multiple-copy genes with alternative splicing and convergent evolution with insect structural proteins.
نویسندگان
چکیده
Lamprin is a unique structural protein which forms the extracellular matrix of several cartilaginous structures found in the lamprey. Lamprin is noncollagenous in nature but shows sequence similarities to elastins and to insect structural proteins. Here, we characterize the structure and organization of lamprin genes, demonstrating the presence of multiple similar but not identical copies of the lamprin gene in the genome of the lamprey. In at least one species of lamprey, Lampetra richardsoni, the multiple gene copies are arranged in tandem in the genome in a head-to-tail orientation. Lamprin genes from Petromyzon marinus contain either seven or eight exons, with exon 4 being alternatively spliced in all genes, resulting in a total of six different lamprin transcripts. All exon junctions are of class 1,1. An unusual feature of the lamprin gene structure is the distribution of the 3' untranslated region sequence among multiple exons. A TATA box and cap sequence have been identified in upstream sequences in close proximity to the transcription start site, but no CAAT box could be identified. Sequence and gene structure comparisons between lamprins, elastins, and insect structural proteins suggest that the regions of sequence similarity are the result of a process of convergent evolution.
منابع مشابه
Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملIn vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay
Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملRole of Aberrant Alternative Splicing in Cancer
Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...
متن کاملCombinatorial DNA Rearrangement Facilitates the Origin of New Genes in Ciliates
Programmed genome rearrangements in the unicellular eukaryote Oxytricha trifallax produce a transcriptionally active somatic nucleus from a copy of its germline nucleus during development. This process eliminates noncoding sequences that interrupt coding regions in the germline genome, and joins over 225,000 remaining DNA segments, some of which require inversion or complex permutation to build...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2000